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Analysis of common attacks in public-key cryptosystems based on low-density parity-check codes
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We analyze the security and reliability of a recently proposed class of public-key cryptosystems against
attacks by unauthorized parties who have acquired partial knowledge of one or more of the private key
components and/or of the plaintext. Phase diagrams are presented, showing critical partial knowledge levels
required for unauthorized decryption.
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[. INTRODUCTION this is typically related to hard computational problems that
cannot be solved in practical time scales.
An important aspect in many modern communication sys- A new public-key cryptosystem based on a diluted Ising
tems is the ability to exclude unauthorized parties from gainspin-glass system has been recently proposed infRefThe
ing access to confidential material. Although cryptosystemsuggested cryptosystem is similar in spirit to that of McE-
in general have an extensive history, until fairly recently theyliece and relies on exploiting physical properties of the
have been based on simple variations of the same them®lacKay-Neal(MN) low-density parity-checkLDPC) error-
information security among authorized parties relies on shareorrecting codes. In particular, in the context of MN codes it
ing a secret key which is to be used for encryption and dehas been showpt—6] that for certain parameter values suc-
cryption of transmitted messages. While in this way confi-cessful decoding is highly likely, while for othetparticu-

dentiality of the sent message may be secured, such systemg|y when the number of parity checks per bit and the num-
suffer from the(obvious drawback of nonsecure key distri- peor of pits per check tend to infinitghe “perfect” solution,

bution. _ hami | . , describing full retrieval of the sent message, admits only a
. n 19|78 I;:YeSt’ Sbl amir, ﬁ_n?] 'Al‘d dertnart"h Irst ollec)/lset:d da;"sayvery narrow basin of attraction; iterative algorithmic solu-
0 resolve this problem which 1ed 1o he celebrated Ations lead in this case, almost certainly, to a decryption fail-
public-keycryptosysteni1] (for historical accuracy, a similar

o i yre. One can use these properties to devise a LDPC based
system was suggested years earlier in the British GCHQ bucr tosysteni4]. The narrow basin of attraction ensures that
was kept secret The idea behind public-key cryptosystems yptosy '

is to differentiate between the encryption and decryptiona random initialization of the decryption equations will fail

keys; private kefs) are assigned to authorized users, for de.t0 converge to the plaintext solution while the naive ap-

cryption purposes, while transmitting parties only need tgProach of' trying all possib!e initial?zations is clearly doomed
know the matching encryptiafpublic) key[2]. The two keys fpr a syfﬁClentIy large plaintext size. The “one-way” func-
are related by a function which generates the encryptioﬁ'on relies on the hard computational task of decomposing a
mechanism from the decryption key with low computationaldense matrixthe public key into a combination of sparse
costs, while the opposite operati¢evaluating the decryp- and dense matricegrivate key$ [7].
tion key from the encryption mechaniiis computationally In this paper we examine the suggested cryptosystem
infeasible. Such functions are called “one-way” or trapdoorfrom an adversary’s viewpoint. We consider an unauthorized
functions; the RSA algorithm, for instance, is based on theparty that has acquired partial or full knowledge of one or
intractability of factorizing large integers generated by takingmore of the private keys, and/or of the message, and we
the product of two large prime numbers. evaluate the critical knowledge levels required for unautho-
The proliferation of digital communication in the last few rized decryption. In addition, we examine the decryption re-
decades has brought in a demand for secure communicatidiability by authorized users due to the probabilistic nature of
leading to the invention of several other public-key crypto-the cryptosystem.
systems, most notable of which are the EI-Gammal crypto- The paper is organized as follows. In the following sec-
system(based on the discrete logarithm prob)ersystems tion we give an outline of the suggested cryptosystem. In
based on elliptic curves, and the McEliece cryptosystengec. Il we formulate unauthorized-decryption scenarios with
(based on linear error-correcting coglg3]. A common de- partial knowledge based on a statistical mechanical frame-
nominator of all public-key algorithms is the high computa- work. In Sec. IV we derive the observable guantity that mea-
tional complexity of the task facing the unauthorized user;sures decryption success of the unauthorized user as a func-
tion of the attack parameters and in Sec. V we examine
various cases and present numerical results as well as the

*Email address: skantzon@aston.ac.uk related phase diagrams. In Secs. VI and VIl we briefly study
"Email address: saadd@aston.ac.uk the basin of attraction of the ferromagnetic solution, and the
*Email address: kaba@dis.titech.ac.jp reliability of the decryption mechanisitfor authorized us-
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er9, respectively. The implications of the analysis are dis-decoding problem of a regular MN error-correcting code; for

cussed in Sec. VIII.

II. DESCRIPTION OF THE CRYPTOSYSTEM

The cryptosystem suggested in Rpf] is based on the
framework of MN error-correcting codd$]. An outline of
the encryption/decryption process is as follows.

A plaintext represented bge {0,1}N is encrypted to the
ciphertextr e {0, (with M>N) using a predetermined
generator matrixGe{0,1} and a corrupting vector{
e{0,3M with P(£)=ps; 1+ (1—p) 8, o for each compo-
nent 1I<i<M,; the Kronecker tensof,, returns 1 when the
arguments are equah&b) and zero otherwise. The gener-
ated ciphertext is of the form

r=Gé+¢

(mod 2. (D)

The (M XN) matrix G together with the corruption rate
€[0,1] constitutes theublic key.

The encryption matrixG is constructed by choosing a
dense matriD (of dimensionalityN X N) and two randomly
selected sparse matricAs(of dimensionalityM X N) andB
(of dimensionalityM X M) through G=B~*AD (mod 2.
The matricesA andB are characterized b andL nonzero
elements per row an@ andL nonzero elements per column,
respectively(irregular constructions with values that vary

from column to column or row to row may also be consid-

ered. The resulting dense matr® is modeledas being char-

the explicit iterative decoding equations see E@gl) and
(55) as well as Refd.5,10|.
The unauthorized user, on the other hand, faces the task of
finding the most probable solutions to the equation
Gé+i=Go+7 (mod 2. 3
The above decryption equation is effectively identical to the
decoding problem of Sourlas error-correcting coda$,
with the public matrixG being dense. Most notably, in the
context of Sourlas codes, finding solutions to E8) is
strongly dependent on initial conditions: for all initial condi-
tions other than the plaintext itself, the iterative equations of
belief propagation will fail to converge to the plaintext solu-
tion [4—6,17 such that obtaining the correct solution for Eq.
(3) without knowledge of the private key will become infea-
sible. Obtaining the private keys by decompos@&gnto A,
B, andD is known to be a hard computational problem even
if the values ofK, C, andL are known[7].

We would like to point to the fact that there may exist
more than one triplet of matricefA,B,D} such thatG
=B~ 1AD. With D being a dense matrix, finding a set of
matricesA’, B’, andD’ such that their combination pro-
ducesG=(B’) *A’D’ requires an exponentially diverging
number of operations, with respect to the system size, mak-
ing the decomposition computationally infeasible. Hor
=1 (as was the original formulation in Ref4]) finding a
pair of sparse matrice&’ andB’ such thatG=(B’) A’
requires only a number of operations that is polynomiailjn

acterized byK’ and C’ nonzero elements per row and per and the cryptosystem is therefore not secure.

column, respectively, withk’,C’'— o (while K'/C’'=N/M

is finite). In fact, the dense matri is of an irregular form
due to the inverse of the sparse matBxas well as the
product taken with the dense matiix we will model the

matrix G by a regular dense matrix to simplify the analysis.

The parameter, C, andL define a particular cryptosystem
while the matricedA, B, andD constitute theprivate key.

Other advantages and drawbacks of the new cryptosystem
appear in Ref[4].
I1l. FORMULATION OF THE ATTACK

An essential ingredient of any cryptosystem is a certain
level of robustness against attacks. The robustness of the

The authorized user may obtain the plaintext from thecurrent cryptosystem against attacks with no additional se-

received ciphertextr by taking the (mod 2 product Br

= A&+ B¢, whereZ=D¢. Finding a set of solutione and =
such that the equation

Ac+Br=AZ+B¢ (mod 2 2)

cret information has already been reported in IR€f. In this
section we study the vulnerability of the new cryptosystem to
various attacks, characterized by partial knowledge of the
secret keys and/or the plaintext itself; the additional informa-
tion manifests itself in a set of decryption equations similar
to Eq.(2) in which partial information of the secret kefand
plaintexd is used in conjunction with the publicly available

is true will lead to candidate solutions of the decryptioninformation of Eq.(3). The explicit knowledge of the matrix
problem (of which the most probable one will be detected D required for the final stepan additional hurdle for a po-

according to a further selection criterjormhis will be fol-
lowed by a product withD ~* to obtain the original plaintext.
For particular choices df andL, solving the above equation

tential attackerhas been all but ignored in the analysis, as
we focus on the feasibility of the decryption operation itself.
The cumulative information provided by the different sets

can be achieved via iterative methods which have commonf equations will potentially allow for a successful decryp-
roots in both graphical models and physics of disorderedion. To this extent, knowledge of the matiikis of utmost

systems such as belief propagatid, belief revision[8],
and more recently survey propagati@]; where state prob-
abilities for the decrypted message Witéo, 7{r) are calcu-

importance since obtaining partial knowledge of the syn-
drome vector and Ed2) is only accessible through decryp-
tion using the matrixB. Let us consider that an unauthorized

lated by solving iteratively a set of coupled equations, deuser has acquired knowledge of a number of rowM,
scribing conditional probabilities of the ciphertext bits given ygM, andypM of the secret matriced, B, andD ! (with

the plaintext and vice versa. This problem is identical to they, €[0,1]).

Relation (2) then provides yM
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FIG. 1. The matrixB of dimensionalityM X M used as a private

key in decryption. The scenario we consider here is that unauthowhich the elementdi,, .

rized users have acquired knowledged#l rows of the matrix.

The (yM X M) block may hade_j =0, ... L nonzero elements per
column for allj.

=min{ya,vs,ypM decryption equations(4) based on
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To facilitate the statistical mechanical description we will
now replace the field0,1;+(mod 2)} by the more familiar
Ising spin representatioill] {—1,1;X}. Equations(4) and
(5) will also be modified. From the matrices,B, andG,|

we construct the binary tensor$={A<il ,,,,, PHAT R
Si <o <igsN1sj<---<j sM} and g
={Gi,,. . i) 1sii<---<iw<N,I<j<M}. The ele-
ments of these tensors ar; .. i ;j,...j,=1 if A andB
have, respectively, a row in which the elemefits, . . . ,ix}
and {j;,...,j } are all 1 and 0 otherwise. Similarly,
Gy, =1 if G and | have, respectively, a row in

.4k} and{j} are all 1 and O
otherwise. The notation we used to indicate tensor elements,
(i1 ...ig), denotes that the sites, ... ,ix are ordered and
different.

The fact that the number of nonzero elements per column

in A,B and G, 1, respectively, ar€;,L; andC’,1, for all

sparse matrices. To analyze the attack we will thus from novwgolumns, will be imposed by the constraints

on assume that a blockyM X M) of all matrices is known to
the unauthorized user withe [ 0,1] (Fig. 1). In this case, the
productSE}V’:lBijr]- fori=1,...,yM can be taken and the
unauthorized user will arrive at the following decryption
problem:

private: (Aa);+ (B7);=(Ad);+ (B,

forrows i=1,...,yM, (4)
public: (Go);+(17);=(G&);+ (1),
forrows i=1,... M, (5)

where we absorbed the matriR using o—Do and §

[P i%l ..... JLA<il ..... il jL)ZCil
Yi,=1,...M, (8
o B 07
VY j,=1,... M, (9
) / ‘g<il ..... 'K’;j>:C, V ilzl,...,M, (10)
12,001 k3]
2 G en=1 Yij=1...M. @D

—D§&; in practice, after decryption, one will have to use theTo compress notation in what follows we will denote the set

inverted matrixD ™1, or part of it, to obtain the original
plaintext itself(rather than its rotated versidn£). All solu-
tions o and 7 will have to simultaneously satisfy Eq&4)

and(5). The matriceA andB will be described by andL

of indices involved in the tensorsd and G by Ay
=<il, . ,iK> andQL=<j1, e 1jL>'

For the system described in Eqg) and (5) the micro-
scopic state probability?( o, 7) can be written as

nonzero elements per row. The average number of known

nonzero elements per column AnandB will be denotedC

andL, respectively. Since is the probability of selecting a
nonzero element in the known part of the private key it fol-

lows thatC= vC andL= vL. For all columnsgj=1,... M
we will denote the number of nonzero elementdirand B
by the random variable€;(==M A;j) andL;(==B;))
which are described by the distributions

C

P(EJ;C):( _>VEJ(1—7)C_E'F Ci=0,...C, ®

J

L

) yfj(l—y)L*Ej, [J:o, N I 4]
J

P(L:L)z(

1
P(o,7£LA.0)= S [A0, 7§ L AA(0,7689)

XP(a;HP(79le D (12
(notice that the dependence &1 is not explicit, but through
the received vector) whereZ is the partition function and
H(o,7) the energy

N M
H(0,7)=—ngl Ui—FTEl 7 (13
i= =

with F,=3In(1—p,)/p, and F,=3In(1—p,)/p,. The fields

F, and F, represent prior knowledge of the statistics from
which the plaintext and the corrupting vector are drawn, such
that
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P(&)=(1-P,)8 1+ Psds -1, Pre[01], (14

P()=(1-p)8; 1+p. 5 1, P[0 (19
The indicator functiona (o, 7;§,¢,.A) andA(o,7;,§,4,0) re-
strict the space of solutionse {—1,1N andre {—1,11M to

those that obey Eq$4) and (5):

1
Ao mgs A= 11 |1+ 545 0,
AL
x| IT o 11 rjzj—lﬂ, (16)
ieAg je
1
Mo zgsG)= ] 11+ 56x .0,
Ay
X il}of.JH/r;éj—l) ., (7
and finally the termsb(- - -) €{0,1} correspond to
N
®(o§)=]1 [(1-c)+cid, g ], (18)
M
e(ng=11 [(1=d)+dis ], (19)

where the quenched variables,d;{0,1} model prior

knowledge of bits of the plaintext and the corrupting vector

such that if for some the plaintext bité; is known then the
thermal variables; takes the quenched plaintext val(and
similarly for the corruption vectot; and ;). For the distri-
bution ofc; andd; we will consider
P(Ci) =W, 8,1+ (1=W,) & o

w,e[0,1], (20

P(d))=w8q 1+ (1-W;)éq 0 W,e[01]. (2]
The system described by E@L2) represents a set of vari-

ables interacting via multispin ferromagnetic couplings of

finite connectivity, represented by a combination of matrices,

in the presence of the random fieldd=, and {;F .. At g8
=1 (which corresponds to the Nishimori temperat{it8])
we will evaluate the free energy per plaintext bit

f=—lim — (22

N— o BN

(In Dr.

The macroscopic observable we are interested in calculating

is the overlapm=1limy_ ..(1/N)Z;& %i between the plaintext
and the bayes marginal posterior maximi@diPM) estimate
of the plaintextéizsgrﬁoi:iai p(oi|r) where p(oi|r) is
the microscopic state probabilif{t2). Disorder averageSr
are taken over the probability distributio$4), (15), (20),
(21) and over the distribution of the tensadsandG obeying
constraing8)—(11):

PHYSICAL REVIEW E 68, 056125 (2003

> P(C)

AAKQL_EJ‘D : )JT(A),
o

(FAN A Ty

1
_N\E

Apeo, ~Ci

I

I

AL TieQp

AQLTieAg

(23

2 e

(a0} =1

(F9)) !
g—N,

’
, A0, —C
Ak QL Tie Ay

X 1]

=

>

ArQprljpeQyy

gAK,QL,—l}ﬂg), (24)

i=1

where NV and N' are the corresponding normalization con-
stants.

The parameters . ,w,,F_,F ., andy describe the attack
characteristics.

IV. THE FREE ENERGY AND DECRYPTION
OBSERVABLES

The calculation generally follows that of Reff6,10].
To perform the various disorder averages we begin by
invoking the replica identityIn Z)=lim,,_,¢1/nIn(Z") and
making the gauge transformations,— ¢, 77— 7¢,
Ao, = Ao Mica illjco & and Gr0,,
—0r0, liea &lljeq, ¢ This will allow us to disen-
tangle the variableg¢,{} from expressions involving the
tensorsA andg in Egs.(16) and(17). Replacing thes func-
tions in Egs.(23) and (24) by their integral representations
allows us to perform the tensor summations. This leads to
site-factorized expressions wittan infinite number m of
replica indices. They take the form

%1 m
qal ..... m = 0-| 1 ya-i )
N
a a
ral ..... am:_z XiUi 11 ,(Ti m’ (25)
i=1
M
= L Ym
tal ..... @ jzl YJTJ' y ’Tj y
ua @ :2 V'T'alv ,Tam, (26)

which we insert in the expression for the free energy via
suitably defineds functlons (giving nse to the Lagrange

multipliers qa1 and

Uy am)' To proceed with the calculation one needs to
assume a certain order parameter symmetry for the above
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guantities and their conjugates for afi>1. The simplest
such assumption renders all replicetuples equivalent and
all order parameters within this replica symmetric scheme
need only depend on the numbar This effect can be de-
scribed by the introduction of suitably defined distributions,
the moments of which completely define theindex order
parameters

Cag, ..., am=rfdyp(y)ym, Tap,..., am=FdeE>(y)y’“,

@9 Iulewl- [ dypy)

where all integrals are over the intenjat 1,1]. The Nishi-
mori condition (83=1), which corresponds to MPM decod-
ing [14], also ensures that this simplest replica-symmetric
scheme is sufficient to describe the thermodynamically
dominant stat¢13,15. Furthermore, it is worthwhile men-
tioning that extending the replica symmetric calculation to
include the one-step replica symmetry breaking ansatz is un-
likely to modify the location of the transition points identi-
fied under the replica-symmetric ansatz, as has been recently
shown in a similar systerfil6]. Using the above ansatz we
perform the trace over the spin variables, and in the lmit
—0 we obtain:

_ . CL . .
—Bf=Extry —CJy[7,7]— ?Jlb[p,p]—C’ch[fb,cﬁ]

—C,J “ +EJ +CIJ
P 1l ¥, ] K 24l TP ] PG 20l ¢, ¥]

A A CL o~ C !
+J3a[777¢>]+gf~]3b[101¢] - R—FF In2,

(31)

where the extremization is taken over the distributions de-
fined in Egs.(27)—(30) and the various integralg,, are

PHYSICAL REVIEW EG68, 056125 (2003

Jil b, p1= J dxdxp(x) p(x) In(1+xx),

D= [ dydwnIGinay, @3

K L
Joel m,p]= f Lf_[l dka<xk>}]1 dyep(ye)

xIn 1+1;[ xkl;[ yg), (39)
K’
[;E[l ka ¢(Xk)‘||n 1+y1_k[ Xk),
(35

c'=1

C!
ool md)= | 11 d&(yco{ <1—7>C<'”§+ [(1-c)

+c6), JefF ] (1+yc,x)>
C!

+<J

X eBFoEo | (14+xc\)
C

c.¢

C
IT dm(xo)
c=1

<In)\2 [(1—c)+céy 4]

] , (36)
c

<[] (1+yc/>\)> >
c’ Ny

Jsb[fa,?//kfdy &(y){(l—y%ln@ [(1-d)

+d5x,ﬂeﬁFf§”(1+y>\)>

+<j{f[1 dp(x,)

xeBngxl:[ (1+x/)\)(l+y)\)> >] (37
, acl =

L

d.Z

<Inhz+ [(1—d)+dé, ]

given by

Jla[w,%]zf dxdxar(x) (x)In(1+xX),

Julpi)= [ aydpmIHGINL+Y),

where
C L
c=> PO, L= PLLL (39
c=0 T-0

Averages denoted- - - )z and(- - -){ are over the densities

(32 (6) and (7) with C=1,...,C andL=1, ... L. Functional
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differentiation of Eq.(31) with respect to the densities of

Egs. (27)—(30) results in the following saddle point equa-

tions:
K—-1
%(%)ZJ{H dxmr( Xk)H dyip(y))
K—-1
X 0 —k1;[ XkH y|:| (39)
L—-1
@) J[f[dmwwofldew)
K —
x8y—1I1 XkH )ﬁ} (40)
k=1 =1
K'—1 K'—1
B(x)= f dyg(y)| 11 dxpxo |9 x=y 11 %],
(41)
K’ K’
&= | IT axoo |95-T1 x| @2
and
m(X)=Wg,8[ Xx—1]
(1 w,) C o c-1 o
2 < Jh]dﬂwﬂldﬂ&4
c-1
><< 5( x—tanr{,@F(,ng 21 arctanlx,)
C/
+ > arctanl@cl)])> > : (43
c'=1 ez
1-w) /- [ .
P(X):W75[X—1]+( EW)<Lfd¢(y) H dp(y))
-1
><< 6( x—tanr{ BF,{+ lzl arctanltx,)
+arctanh§/)])> > , (44)
[

PHYSICAL REVIEW E 68, 056125 (2003

c'-1

c'-1
¢(X):Wg5[X_1]+(1—Wg)J I1 dgf’(Yc')[(l_)’)c
c'=1
BF &+ >, arctantty,)
c'=1

(i)
(e
I}

7(Xe)

1

c c’'-1

+ >, arctantix,)+ >, arctaniy.)
c=1 c'=1

p(x)=w, 5[X—1]+(1—WT){ (1-p*

L

BF {+ Izl arctanlfx,)

L

L
X<5[X—tanHﬁFT§)]>{+<J ll:[ld;’(;ﬂ)l

(g )

In general, the coupled set of equatiq38)—(46) are to be
solved numerically. Among the set of that satisfy Eqs(4)

and (5) we choose the MPM estimate of the plaintext
=sgrE,, -+ 0; p(oi|r)=sgno;) (thermal averageby using
Nishimori’s condition(or 8=1) [13]. Then, the overlagn
=limy_...1IN3;& & becomes

m:w(,+(1—w(,)f dh P(h)signh), (47)

B oo
) A7

P(h)=f
o

+ >, arctanlty.)
c'=1

{foo

C’
+ X, arctanltyy)

c'=1

IT dm(xo)

C

BF &+ 21 arctanlx.)

)}

from which it can be seen that the perfé&trromagnetic
solutionm=1 is achieved whenv,=1 (complete knowl-

edge of the solutionor when ¢(x)=8[x—1]. This also

(48)
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implies that all densities involved in EQq(31) A\(X) 0B T T
={m(x), ..., (x)} acquire the form (x) =& x— 1] giving I A
a free energy of the form 02 r VA
C’ C Ds 0.15 -
fem= < K |n2_RﬁFT<§>§- (49 -
01 |
The physical meaning of the terms §[x—1] in Egs.(43)— 005 _
(46) is that the acquired microscopic knowledge gives a |
probabilistic weight at the ferromagnetic state. The state o L
=0 is obtained ifw,=F,=0 andm(x) = ¢(x) = 8[x] (para- 0
magnetic solution v

FIG. 2. Phase diagram of the spinodal corruption rate against the
fractional knowledge of the private key for a (K,C,L)=(2,6,2)

In this section we obtain numerical solutions for variouscryptosystem for\,, ,w,) = (0,0) (solid line) and (0.2,0.2Ydashed
attack scenarios. In all cases studied we assume an unbiagdé®®). Microscopic knowledge of the plaintext and the corrupting
plaintext (p,=1/2, F,=0); for brevity we refer to the re- vector enlarges the perfect decryption area, as expected.
maining bias parameter, the corruption level dengtedn
previous sections, simply gs All experiments have been To that endy will have a direct impact on the effective code
carried out using a regular cryptosystem Wik=L =2, be-  rateN/(My), the average connectivityC, and the connec-
ing the original cryptosystem suggested in Réd. In prin- ity distribution. It is clear that at an effective code rate 1
ciple, one can use any set of regular or irregular matrices(,y: N/M=1/3 in the case of the parameters used in Fig. 2
provided one identifies the corresponding dynamical transigecryntion is even not theoretically feasible. The reason Fig.
tion point. However, havmg been thoroughly St.Ud'ed previ- points to a possibility of decryption below this value is due
ously, the current construction serves as a particularly suite additional information brought in by the dense compo-
benchmark. . . nents we ignored in this simplistic description.

Solving the coupled equatiori89)—~(46) we typically ob- We also examined the effect of prior microscopic knowl-

serve that for sufficiently small values ptthe ferromagnetic d f the plaintext/ i ¢ -0 h
statem=1 is the only stable solution whereas at a corruptione ge ot the piaintex C(_)m_lp INg vec ok Wr ) on he
value that marks the dynamic&pinodal transitionps, an area of perfect decryption; which clearly increases with the

exponential number of solutions with=1 are createdei-  Knowledge provided, as expected. Also this can be viewed as
ther suboptimal ferromagnetic or paramagnetic, dependin§ change to the effective code rate. This time, the partial
on the values ofK,C,L)]. For all p>p, perfect decryption Microscopic knowledge of either plamtext or corrupting vec-
will be difficult to obtain. This transition also defines the tor (or both serves to reduce the effective number of vari-
corruption level below which an unauthorized attacker, whoables and hence the code rate itself; lower code rate will
has acquired partial information of the secret keys, will betypically allow for perfect decryption in worse corruption

V. PHASE DIAGRAMS

successful. conditions as can be seen in Fig. 2

We will concentrate on two main attack$) the attacker To understand the implication of these results let us as-
has partial knowledge of the keyprimarily the matrixB); sume using the cryptosystem described in Fig. 2 at a chosen
(il) the attacker has partial microscopic knowledge of thecorruption level ofp=0.1 (which is chosen much smaller
plaintext and/or corruption vector. that ps to increase the decryption reliabiljityln this case

In Fig. 2 we present a phase diagram describing regionknowing about 70% of the matricesecret keys will be
with perfect (n=1) or partial/null (m|<1) decryption suc- sufficient for decrypting the ciphertext. True, there is still a
cess as evaluated from solving E31) and (47). We plot  need to know the dense matiiX ! for extracting the plain-
the dynamical transition corruption level as a function of text itself and the exposed fraction of the secret key is sig-
the private key fractional knowledgefor different values of nificant; but still there is a weakness that may be exploited
w, andw, (we have sep,=1/2 which corresponds to an by a skillful attacker.

‘unbiased’ plaintext In the limit y=0 (i.e., no knowledge of To compare the importance of prior microscopic knowl-
the matrices while m=1 may be a stable solution, the de- edge of plaintext versus that of the corrupting vector we
cryption dynamics is fully dominated byn|<1 states. For plotted in Fig. 3 the phase diagrams fow(,w,)
vy=1 the cryptosystem describes a specific MN code ané={(0.10),(0.2,0)} and {w,,w,)={(0,01),(0,0.2)} which
perfect decryption can occur belgwy. describe two complementary scenarios. The effect is quite

The interaction between sparsé€fl) and densely5) con-  similar, taking into account the information provided by the
nected decryption components is nonlinear and nontrivialtwo vectors(the plaintext is unbiased but of lengthwhile
however, as a first approximation one can view the fractionathe corruption vector is biased but of lendéh). For highy
matrix knowledgey as changing the effective sparse compo-values microscopic knowledge of the corrupting vector be-
nent, which is the main contributor in the decryption processcomes more informative than that of the plaintext, an effect
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FIG. 3. Phase diagrams of the spinodal corruption rates against the fractional knowledge of the privaterkayK,C,L)=(2,6,2)
cryptosystem. Left picturew(, ,w,) =(0.1,0)(solid line) and (0,0.1)dashed ling Right picture: (v, ,w,)=(0.2,0)(solid line) and (0,0.2)
(dashed ling For sufficiently largey values microscopic knowledge of the corrupting vector becomes more important to the unauthorized
user than that of the plaintext; this effect becomes more emphasized as the fraction of known bits increases.

which becomes more emphasized as the fraction of knowfectly; this corresponds to corruption and partial knowledge
bits increases.

In Fig. 4 we compare two cryptosystems witk,C,L)
=(2,4,2) and K,C,L)=(2,3,2) for (w,,w,)=(0,0). We
see that smalle€ values(i.e., higher code ratésvill reduce

levels below the solid and dashed lines of Fig. 2.

Above the dynamical transition point, new suboptimal so-
lutions are created and the overlap value obtained deterio-
rates with the corruption level. However, the two different

the area of perfect decryption. On the one hand, this willchoices ofw, values lead to two different deterioration pat-
increase the secret information required for perfect decrypl€ms: while overlap in the system with no microscopic
tion at each corruption level; on the other hand, it will reduceknowledge of the plaintext deteriorates very rapidly, the sys-

the corruption level that can be used and will expose th

cryptosystem to attacks based on an exhaustive search 91?3 even if the corruption is high. As a consequence, we see

at the effect of microscopic knowledge goes beyond a shift
Oin the dynamical transition point; it also influences decryp-

tion beyond that pointin fact, it goes even beyond Shan-
on’s limit).

corruption vectors.

The security of a cryptosystem may be compromise
without a full recovery of the plaintext; also partial recovery
of the plaintext may pose a significant threat. To study thd’
effect of partial knowledge of the matrices and plaintext on

the ability to obtain high overlap between the decrypted ci-

lap obtainedm as function of the corruption ratp for a
specific cryptosystemK,C,L)=(2,6,2) along the liney
=0.8 and for two different choices af,. Prior to the dy-

dem withw,= 0.2 provides solutions with high overlap val-

VI. BASIN OF ATTRACTION
phertext and plaintext, we conducted several experiments, an The increasingly narrowing basin of attraction for the fer-
example of which appears in Fig. 4. Here we show the overromagnetic solution, as the connectivity valu¢sC, and

L—oo, is central to the security level offered by the crypto-
system. The effect has been reported in a number of papers
in the statistical physic$4,12] and information-theony5]

namical transition points both ciphertexts are decrypted petiterature; in this section we will show that the basin of at-

0.15 T T 1
08
0.1 E
Im| <1 06 |
Ds m
0.4
0.05
02 r
0 I L "A 0
0 0.2 0.4 0.6 0.1
8

0.2

0.4

FIG. 4. Left: Comparison between two different cryptosystems with,L) =(2,3,2) (solid line) and K,C,L)=(2,4,2) (dashed ling

SmallerC values correspond to higher rate codes and lead to smaller regions in parameter space where perfect decryption is possible. Right:

Overlapm as function of the corrupting rageobtained from Eq(47) for a (K,C,L)=(2,6,2) cryptosystem and along the lirre=0.8 for
(w,,w,)=(0.2,0) (solid line) and (v, ,w,)=(0,0) (dashed ling
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traction shrinks as the connectivity increases, to a value of

O(1/K) asK,C—o. moi=J, H s H mgi,
To provide a rough evaluation of the basin of attraction e L2%uni - jeli(p)
(BOA) for obtaining the ferromagnetic solution we focus on .
Eq. (2) in the limit K,C—. BOA clearly depends on the m,=3, I[I my I m, (54)
algorithm used; here we focus on the belief propagatiz) le £7(w) ke L7(u)\]
algorithm, which is empirically known to be the best practi-
cal algorithm for solving problems of the current type. As far m?,=tanH F;+ E arctanhrﬁ‘vﬂ)
as we explored, no other schemes such as the naive mean ve M)

field and the belief revision algorithms exhibit better perfor-
mance than BP, which implies that our consideration on BP
is at least of a certain practical significanservey propaga- —tan}'< F.+
tion [9] has not yet been tested for these sysjems

Let us represent prior knowledge on plainté&dnd noise
£ (in Ising spin representatigpras theprior probabilities

> arctan}(lr?l:j)) . (55

ve MT()\u

WhereJ#E (H| EC"(/.L)§|Hj Eﬁf(,u)gj)l L U(,LL) and L T(M) are

the sets of indices of nonzero elementsuitih row of A and

exp(F ;) B, respectively, and\1 ?(i) and M "(j) are similarly defined
gl

P2(0y)= > coSHE )" (500  for columns ofA andB, respectivelyL “(u)\i denotes a set
cosfiF ;) of indices in£“ other thani, and similarly for other sym-
) exp(F ) bols. The variablesm?” and m¢|" represent pseudo-
P = 5 (51 posterior-averages of; (or 7;) when theuth checkJ, is left
2 coshiF ;)

out, and the influence of a newly addég on o (or 7y),

respectively. Here, the parametdts; andF ,; express con- respectively(see Refs[5,10] for details. Using my;, the
fidence of the prior knowledge per variable, which is a gen-posterior averagen]” is obtained as

eralization of the global prior termis, ,F . used earlier. No-

tice that this representation includes the case that certain bits mf’ztank( F,+ > arctankim?)|. (56)

are completely determined by settif,;| (or |[F|) —oe, e M) .

enabling us to cover various scenarios. In the following, we

assume that the fraction of completely determined bits is less Let us investigate the condition necessary for finding the
than 1 whenN,M—. Given prior probabilities50) and  correct solution by iterating Eq$54) and (55) in the limit
(51), and the indicator function (e, 7;£,¢,.4) which is the ~K,C—<. For this purpose, we first employ the gauge trans-
alternative to parity check Eq2), the Bayesian framework formation &m7; —m?, §|m —>mﬂ,, gimy—my;, ¢m;

. ’ o . i i
provides theposterior probability —m7; and J,(I) ¢ co&11 _]EET(,u)gj)*)l' This decouples
N M the quenched random variablgsand {; from Eq. (54), as
Ao 7 PO o PO( 7. J, becomes independent of the quenched variables, and the
(o.78¢ A)H '(U')-H () BP equations can be expressed as
PPOS{ g, 7) = 7 ,
(52 m?, = 11 my 11 my;,
. L . e L9(uNi jeLl(pm)
whereZ is the normalization constant. Using E&2), one
can determine the best possible action for minimizing the w1l o 11 .
expected value of a given cost functifii¥]. As a cost func- m I e m i My (57
tion, we select here the Hamming distance between the cor- =£7 LT
rect plain text¢ and its estimateg, L(£ &=N— E lg & ” ” g
this selection naturally offers the MPM decoding =tanf Fi §‘+VEMEUU)W arctaniimy;) |,

=sgn(m’) as the optimal estimation strategy, where

i m’.=tanh F7¢;+ >,  arctankim’)|. (58
m’=2, o; PP*{(a,7), (53 # r( AR YE :
o, 7T

The expression of the correct solution is also converted to
=1 andm/;=1. Notice that any state which is charac-

Computational cost for an exact evaluation of the spin e”ZEd by decreasmg absolute valutm”l|<l e and
average(53) increases ag(2N*M), which implies that Im7;)|<1—e for an arbitrary fixed positive "number>0 is
MPM decoding is practically difficult. An alternative ap- attracted to a locally stable solutlcm i~0, m 5j~0, my
proach is to resort to an approximation such as BP. In the=tanhf/§), andm; =tanh/¢;) for K—>:>o in a smgle up—
current case, this means to iteratively solving the couplediate since products on the right hand sides of (&@) van-
equationgfor details of the derivation see Ref&,10]) ish. To provide a rough evaluation of the BOA for the correct

is the average of spin; over the posterior probability and
sgnx)=1 for x>0 and—1, otherwise.

056125-9



SKANTZOS, SAAD, AND KABASHIMA PHYSICAL REVIEW E 68, 056125 (2003

(ferromagnetig solution mziz 1 andm;jz 1, let us assume wherel'={§,¢, A} collectively denotes the set of quenched
thatm?; andm’; are randomly distributed at-1s(K) and  variables. The powek €[0,1] is used in conjunction with
—[1—¢(K)] with probabilities - p(K) andp(K), respec- the partition functions

tively, wheree(K) and p(K) are small parameters to char-

acterize the BOA for a largi. Under this assumptiom; Z(T;By)=> >, e Ao

and r‘n;jKj are distributed at =[1—g(K)]KTt~=[1 orETHL

—g(K)]X with probability {1+[1—2p(K)]**t2~{1

+[1-2p(K)1¥}/2, respectively. If eithef1—e(K)]< or Zy(T;By) =2, >, e Ao (61)
[1—2p(K)]K is negligible, the absolute values of,; and 7 7

m,,; become sufficiently smaller than 1, and therefore, thy provide an indicator function as explained below. The
state is trapped in a locally stable solution in the Seco”q-lamiltonianH(o,a-) is given by Eq.(13) and the trace over
iteration[19]. This implies that the critical condition is given spin variables is restricted to those configurations satisfying
by &(K)~0O(1/K) andp(K)~O(1/K) for largeK. In terms  £q (4). The above partition functiong, andz, differ only

of the macroscopic overlap, this mean§,~1—0O(1/K). in the exclusion of the true plaintext and corrupting vector in
the trace over variables; this enables us to identify instances
where the maximum likelihood decoder chooses solutions
that do not match the truéquenched variabjevectors.

Unlike most of the commonly used cryptosystems whichHamiltonian (13) is proportional to the magnetizatic_)ns
are based on a deterministic decryption procedure, the cufs(0)=(1/N)Zio; and m,(7)=(1/M)Z;7. Therefore, if
rent cryptosystem relies on a probabilistic decryption prothe true plaintext and corrupting vectors have the highest
cess. The evaluation of decryption success foaathorized ~Magnetizations(decryption succegsthe Boltzmann factor
user is therefore as important as assessing the level of robu§xd —BH(o,7)] will dominate the sum over states #y in
ness against attacks. the limit B—o andW¥(I')=0. Alternatively, if some other

In practical scenarios, decryption success generally decectorse# £ and7# £ have the highest magnetizations of all
pends on the plaintext size. Analysis of finite size effects incandidates(decoding failurg its Boltzmann factor will
the belief propagation based decryption procedure is diffidominate bothz, andZ, so that¥(I')=1. Separate tem-
cult. A principled alternative that we pursue here is based operaturess; , and powersi; , have been introduced to de-
evaluating theaverage error exponentf the current crypto-  termine whether obtained solutions are physical or(wat-
system; this provides the expected error level at any giveties of these parameters will be obtained via the zero-entropy
corruption level when maximum likelihood decoding is em- condition.
ployed, and therefore represents a lower bound to the ex- To derive the average error expondffp) we take the
pected error rate. Moreover, the corruption levels employedogarithm of the above indicator function averaged with re-
are far below the criticalthermodynamig transition point, ~ Spect to the disorder variablés={£,¢, A},
we thereforeassumehat belief propagation decryption will

VII. RELIABILITY

provide similar performance to maximum likelihood decod- — i i
ing; clearly, the lower bound will become looser as we get E(P) ,VlllTwM In{¥(I))r - (62)
close to the dynamical transition point.

The average block error ratez(p) (i.e., erroneous de- The evaluation of Eq(62) is similar in spirit to the analy-
crypted plaintextstakes the form sis of Sec. IV. For details of this calculation we refer the

reader to Ref[18] where we also study and compare the
reliability and average error exponents of various low-
density parity-check codes.

Results describing(p) for authorized decryption of the

whereE(p) is the average error exponent per noise lqvel Cryptosysteni4] are presented in Fig. 5 where we pkfp)
andM the length of the ciphertexin the particular case of as function of the corruption leved for (K,C,L)=(2,8,2)
LDPC codes we assume that short loops, which contributécode rate 1/#and (K,C,L)=(2,4,2) (code rate 1/pcryp-
polynomially to the block error probabilitj17], have been tosystems. It is clear that decryption errors decay very fast
removed. The quantityPg(p) represents the probability by With the system size as we go away from the critical corrup-
which candidate solutiono, 7} are drawn from the set of tion level. For instance, in the case &= 1/4, using a cor-
those satisfying Eq) (with y=1; authorized decryption fuption level ofp=0.13(Shannon’s limit is ap=0.20) and
other than the ones corresponding to the true plaintext an@ modest ciphertext size &l =1000 will result in a negli-
corrupting vectoro= & and 7= ¢, respectively. To evaluate 9ible block error probabilityPg=10"*"

this probability we introduce the indicator function

Pg(p)=e ME®) (59)

VIIl. DISCUSSION

V()= lim lim [Z){l(r;ﬁl)z)z\z(nﬁz)]ﬁ _B=p In this paper we have analyzed several security issues
BNy g =N e related to the recently suggested public-key cryptosystem of
(60) Ref. [4]. The suggested cryptosystem is based on the com-
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tained by using the replica symmetric anZdt§]. Our phase
diagrams show the dynamical threshold as a function of the
partial acquired knowledge of the private key; they describe
_ regions with perfectri=1) or partial/null decryption suc-
cess (m|<1).

Public-key cryptosystems play an important role in mod-
ern communications. The increasing demand for secure
transmission of information has lead to the invention of
novel cryptosystems in recent years. To this extent and based

on the insight gained by statistical physics analyses of error-
R e S — correcting codes a new family of cryptosystems was sug-
0.5 ol 0‘;,5 02 025 gested in Refl4]. This paper constitutes a first step in study-

ing this class of cryptosystems by considering the potential
FIG. 5. Reliability exponent62) as a function of the corruption success of possible attacks.

level p for the caseK=L=2 and ratesR=1/2 (dashed ling and Several future research directions aimed at improving the
R=1/4 (solid line). security and reliability of this cryptosystem may include
studying the efficacy of irregular code constructions and the
putational difficulty of decomposing a dense matrix into ause of novel decryption methods such as survey propagation
combination of dense and sparse matrigaiseying certain  [9] for pushing the dynamical transition point closer to the
statisticg which is a known hard computational problem. We information theoretic limits.
have considered several attack scenarios in which unautho-
rized parties have acquired partial knowledge of one or more
of the private keys and/or microscopic knowledge of the
plaintext and/or the “corrupting vector.” The analysis fol-  We would like to thank Jort van Mourik for helpful dis-
lows standard statistical mechanical methods of dealing witltussions. Support from EPSRC research grant, Grant No.
diluted spin systems within replica symmetric consider-GR/N63178, the Royal Societ{D.S., N.S), and Grant-in-
ations. Of central importance to the unauthorized decryptio\id, MEXT, Japan, No. 14084206v.K.) are gratefully ac-
is the dynamical transition which defines decryption succesknowledged. NS would also like to acknowledge support
in practical situations. This has been calculated using a regrom the Fund for Scientific Research-Flanders, Belgium, for
lica symmetric ansatz, which is sufficient for an accuratethe final stages of this research. This work has been sup-
evaluation of the dynamic transition point; more involved ported in part by the European Community’s Human Poten-
one-step replica symmetry breaking schemes for similar sygial Programme under Contract No. HPRN-CT-2002-00319,
tems predict the same dynamical transition point as that obSTIPCO.
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