
s

PHYSICAL REVIEW E 68, 056125 ~2003!
Analysis of common attacks in public-key cryptosystems based on low-density parity-check code
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We analyze the security and reliability of a recently proposed class of public-key cryptosystems against
attacks by unauthorized parties who have acquired partial knowledge of one or more of the private key
components and/or of the plaintext. Phase diagrams are presented, showing critical partial knowledge levels
required for unauthorized decryption.
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I. INTRODUCTION

An important aspect in many modern communication s
tems is the ability to exclude unauthorized parties from ga
ing access to confidential material. Although cryptosyste
in general have an extensive history, until fairly recently th
have been based on simple variations of the same the
information security among authorized parties relies on sh
ing a secret key which is to be used for encryption and
cryption of transmitted messages. While in this way con
dentiality of the sent message may be secured, such sys
suffer from the~obvious! drawback of nonsecure key distr
bution.

In 1978 Rivest, Shamir, and Adleman first devised a w
to resolve this problem which led to the celebrated R
public-keycryptosystem@1# ~for historical accuracy, a simila
system was suggested years earlier in the British GCHQ
was kept secret!. The idea behind public-key cryptosystem
is to differentiate between the encryption and decrypt
keys; private key~s! are assigned to authorized users, for d
cryption purposes, while transmitting parties only need
know the matching encryption~public! key @2#. The two keys
are related by a function which generates the encryp
mechanism from the decryption key with low computation
costs, while the opposite operation~evaluating the decryp
tion key from the encryption mechanism! is computationally
infeasible. Such functions are called ‘‘one-way’’ or trapdo
functions; the RSA algorithm, for instance, is based on
intractability of factorizing large integers generated by tak
the product of two large prime numbers.

The proliferation of digital communication in the last fe
decades has brought in a demand for secure communic
leading to the invention of several other public-key cryp
systems, most notable of which are the El-Gammal cryp
system~based on the discrete logarithm problem!, systems
based on elliptic curves, and the McEliece cryptosyst
~based on linear error-correcting codes! @3#. A common de-
nominator of all public-key algorithms is the high comput
tional complexity of the task facing the unauthorized us
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this is typically related to hard computational problems th
cannot be solved in practical time scales.

A new public-key cryptosystem based on a diluted Isi
spin-glass system has been recently proposed in Ref.@4#. The
suggested cryptosystem is similar in spirit to that of Mc
liece and relies on exploiting physical properties of t
MacKay-Neal~MN! low-density parity-check~LDPC! error-
correcting codes. In particular, in the context of MN codes
has been shown@4–6# that for certain parameter values su
cessful decoding is highly likely, while for others~particu-
larly when the number of parity checks per bit and the nu
ber of bits per check tend to infinity! the ‘‘perfect’’ solution,
describing full retrieval of the sent message, admits onl
very narrow basin of attraction; iterative algorithmic sol
tions lead in this case, almost certainly, to a decryption f
ure. One can use these properties to devise a LDPC b
cryptosystem@4#. The narrow basin of attraction ensures th
a random initialization of the decryption equations will fa
to converge to the plaintext solution while the naive a
proach of trying all possible initializations is clearly doome
for a sufficiently large plaintext size. The ‘‘one-way’’ func
tion relies on the hard computational task of decomposin
dense matrix~the public key! into a combination of sparse
and dense matrices~private keys! @7#.

In this paper we examine the suggested cryptosys
from an adversary’s viewpoint. We consider an unauthoriz
party that has acquired partial or full knowledge of one
more of the private keys, and/or of the message, and
evaluate the critical knowledge levels required for unaut
rized decryption. In addition, we examine the decryption
liability by authorized users due to the probabilistic nature
the cryptosystem.

The paper is organized as follows. In the following se
tion we give an outline of the suggested cryptosystem.
Sec. III we formulate unauthorized-decryption scenarios w
partial knowledge based on a statistical mechanical fra
work. In Sec. IV we derive the observable quantity that m
sures decryption success of the unauthorized user as a
tion of the attack parameters and in Sec. V we exam
various cases and present numerical results as well as
related phase diagrams. In Secs. VI and VII we briefly stu
the basin of attraction of the ferromagnetic solution, and
reliability of the decryption mechanism~for authorized us-
©2003 The American Physical Society25-1
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ers!, respectively. The implications of the analysis are d
cussed in Sec. VIII.

II. DESCRIPTION OF THE CRYPTOSYSTEM

The cryptosystem suggested in Ref.@4# is based on the
framework of MN error-correcting codes@5#. An outline of
the encryption/decryption process is as follows.

A plaintext represented byjP$0,1%N is encrypted to the
ciphertext rP$0,1%M ~with M.N) using a predetermined
generator matrix GP$0,1% and a corrupting vectorz
P$0,1%M with P(z i)5pdz i ,1

1(12p)dz i ,0
for each compo-

nent 1< i<M ; the Kronecker tensordab returns 1 when the
arguments are equal (a5b) and zero otherwise. The gene
ated ciphertext is of the form

r5Gj1z ~mod 2!. ~1!

The (M3N) matrix G together with the corruption ratep
P@0,1# constitutes thepublic key.

The encryption matrixG is constructed by choosing
dense matrixD ~of dimensionalityN3N) and two randomly
selected sparse matricesA ~of dimensionalityM3N) andB
~of dimensionalityM3M ) through G5B21AD ~mod 2!.
The matricesA andB are characterized byK andL nonzero
elements per row andC andL nonzero elements per column
respectively~irregular constructions with values that var
from column to column or row to row may also be cons
ered!. The resulting dense matrixG is modeledas being char-
acterized byK8 and C8 nonzero elements per row and p
column, respectively, withK8,C8→` ~while K8/C85N/M
is finite!. In fact, the dense matrixG is of an irregular form
due to the inverse of the sparse matrixB as well as the
product taken with the dense matrixD; we will model the
matrix G by a regular dense matrix to simplify the analys
The parametersK, C, andL define a particular cryptosystem
while the matricesA, B, andD constitute theprivate key.

The authorized user may obtain the plaintext from
received ciphertextr by taking the ~mod 2! product Br
5Aĵ1Bz, whereĵ5Dj. Finding a set of solutionss andt
such that the equation

As1Bt5Aĵ1Bz ~mod 2! ~2!

is true will lead to candidate solutions of the decrypti
problem ~of which the most probable one will be detect
according to a further selection criterion!. This will be fol-
lowed by a product withD21 to obtain the original plaintext
For particular choices ofK andL, solving the above equatio
can be achieved via iterative methods which have comm
roots in both graphical models and physics of disorde
systems such as belief propagation@5#, belief revision@8#,
and more recently survey propagation@9#; where state prob-
abilities for the decrypted message bitsP(s,tur) are calcu-
lated by solving iteratively a set of coupled equations,
scribing conditional probabilities of the ciphertext bits giv
the plaintext and vice versa. This problem is identical to
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decoding problem of a regular MN error-correcting code;
the explicit iterative decoding equations see Eqs.~54! and
~55! as well as Refs.@5,10#.

The unauthorized user, on the other hand, faces the tas
finding the most probable solutions to the equation

Gj1z5Gs1t ~mod 2!. ~3!

The above decryption equation is effectively identical to t
decoding problem of Sourlas error-correcting codes@11#,
with the public matrixG being dense. Most notably, in th
context of Sourlas codes, finding solutions to Eq.~3! is
strongly dependent on initial conditions: for all initial cond
tions other than the plaintext itself, the iterative equations
belief propagation will fail to converge to the plaintext sol
tion @4–6,12# such that obtaining the correct solution for E
~3! without knowledge of the private key will become infe
sible. Obtaining the private keys by decomposingG into A,
B, andD is known to be a hard computational problem ev
if the values ofK, C, andL are known@7#.

We would like to point to the fact that there may exi
more than one triplet of matrices$A,B,D% such thatG
5B21AD. With D being a dense matrix, finding a set of
matricesA8, B8, and D8 such that their combination pro
ducesG5(B8)21A8D8 requires an exponentially divergin
number of operations, with respect to the system size, m
ing the decomposition computationally infeasible. ForD
51 ~as was the original formulation in Ref.@4#! finding a
pair of sparse matricesA8 and B8 such thatG5(B8)21A8
requires only a number of operations that is polynomial inN,
and the cryptosystem is therefore not secure.

Other advantages and drawbacks of the new cryptosys
appear in Ref.@4#.

III. FORMULATION OF THE ATTACK

An essential ingredient of any cryptosystem is a cert
level of robustness against attacks. The robustness of
current cryptosystem against attacks with no additional
cret information has already been reported in Ref.@4#. In this
section we study the vulnerability of the new cryptosystem
various attacks, characterized by partial knowledge of
secret keys and/or the plaintext itself; the additional inform
tion manifests itself in a set of decryption equations simi
to Eq.~2! in which partial information of the secret keys~and
plaintext! is used in conjunction with the publicly availabl
information of Eq.~3!. The explicit knowledge of the matrix
D required for the final step~an additional hurdle for a po
tential attacker! has been all but ignored in the analysis,
we focus on the feasibility of the decryption operation itse

The cumulative information provided by the different se
of equations will potentially allow for a successful decry
tion. To this extent, knowledge of the matrixB is of utmost
importance since obtaining partial knowledge of the sy
drome vector and Eq.~2! is only accessible through decryp
tion using the matrixB. Let us consider that an unauthorize
user has acquired knowledge of a number of rowsgAM ,
gBM , andgDM of the secret matricesA, B, andD21 ~with
g!P@0,1#). Relation ~2! then provides gM
5-2
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[min$gA ,gB ,gD%M decryption equations~4! based on
sparse matrices. To analyze the attack we will thus from n
on assume that a block (gM3M ) of all matrices is known to
the unauthorized user withgP@0,1# ~Fig. 1!. In this case, the
products( j 51

M Bi j r j for i 51, . . . ,gM can be taken and th
unauthorized user will arrive at the following decryptio
problem:

private: ~Âs! i1~B̂t! i5~Âj! i1~B̂z! i

for rows i 51, . . . ,gM , ~4!

’

public: ~Gs! i1~ It! i5~Gj! i1~ Iz! i

for rows i 51, . . . ,M , ~5!

where we absorbed the matrixD using s→Ds and j
→Dj; in practice, after decryption, one will have to use t
inverted matrixD21, or part of it, to obtain the origina
plaintext itself~rather than its rotated versionDj). All solu-
tions s and t will have to simultaneously satisfy Eqs.~4!

and~5!. The matricesÂ andB̂ will be described byK andL
nonzero elements per row. The average number of kno
nonzero elements per column inÂ andB̂ will be denotedC̄

and L̄, respectively. Sinceg is the probability of selecting a
nonzero element in the known part of the private key it f
lows thatC̄5gC and L̄5gL. For all columnsj 51, . . . ,M
we will denote the number of nonzero elements inÂ and B̂

by the random variablesC̃j (5( i 51
gM Âi j ) and L̃ j (5( j 51

gM B̂i j )
which are described by the distributions

P~C̃j ;C!5S C

C̃j
D g C̃j~12g!C2C̃j , C̃j50, . . . ,C, ~6!

P~ L̃ j ;L !5S L

L̃ j
D g L̃ j~12g!L2L̃ j , L̃ j50, . . . ,L. ~7!

FIG. 1. The matrixB of dimensionalityM3M used as a private
key in decryption. The scenario we consider here is that unau
rized users have acquired knowledge ofgM rows of the matrix.

The (gM3M ) block may haveL̃ j50, . . . ,L nonzero elements pe
column for all j.
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To facilitate the statistical mechanical description we w
now replace the field$0,1;1(mod 2)% by the more familiar
Ising spin representation@11# $21,1;3%. Equations~4! and
~5! will also be modified. From the matricesÂ,B̂, andG,I
we construct the binary tensorsA5$A^ i 1 , . . . ,i K ; j 1 , . . . ,j L& ;1

< i 1,•••, i K<N,1< j 1,•••, j L<M % and G
5$G^ i 1 , . . . ,i K8 ; j& ;1< i 1,•••, i K8<N,1< j <M %. The ele-

ments of these tensors areA^ i 1 . . . i K ; j 1 . . . j L&51 if Â and B̂

have, respectively, a row in which the elements$ i 1 , . . . ,i K%
and $ j 1 , . . . ,j L% are all 1 and 0 otherwise. Similarly
G^ i 1 , . . . ,i K8 ; j &51 if G and I have, respectively, a row in

which the elements$ i 1 , . . . ,i K8% and $j% are all 1 and 0
otherwise. The notation we used to indicate tensor eleme
^ i 1 . . . i K&, denotes that the sitesi 1 , . . . ,i K are ordered and
different.

The fact that the number of nonzero elements per colu
in Â,B̂ and G,I , respectively, areC̃i ,L̃ i and C8,1, for all
columns, will be imposed by the constraints

(
i 2 , . . . ,i K ; j 1 , . . . ,j L

A^ i 1 , . . . ,i K ; j 1 , . . . ,j L&5C̃i 1

; i 151, . . . ,M , ~8!

(
i 1 , . . . ,i K ; j 2 , . . . ,j L

A^ i 1 , . . . ,i K ; j 1 , . . . ,j L&5L̃ j 1

; j 151, . . . ,M , ~9!

(
i 2 , . . . ,i K8 ; j

G^ i 1 , . . . ,i K8 ; j &5C8 ; i 151, . . . ,M , ~10!

(
i 1 , . . . ,i K8

G^ i 1 , . . . ,i K8 ; j &51 ; j 51, . . . ,M . ~11!

To compress notation in what follows we will denote the s
of indices involved in the tensorsA and G by LK
5^ i 1 , . . . ,i K& andVL5^ j 1 , . . . ,j L&.

For the system described in Eqs.~4! and ~5! the micro-
scopic state probabilityP(s,t) can be written as

P~s,tuj,z,A,G!5
1

Z
@D~s,t;j,z,A!D~s,t;j,z,G!

3F~s;j!F~t;z!#e2bH(s,t) ~12!

~notice that the dependence onj,z is not explicit, but through
the received vectorr) whereZ is the partition function and
H(s,t) the energy

H~s,t!52Fs(
i 51

N

s i2Ft(
j 51

M

t j ~13!

with Fs5 1
2 ln(12ps)/ps and Ft5 1

2 ln(12pt)/pt . The fields
Fs and Ft represent prior knowledge of the statistics fro
which the plaintext and the corrupting vector are drawn, su
that

o-
5-3
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P~j i !5~12ps!dj i ,1
1psdj i ,21 , psP@0,1#, ~14!

P~z j !5~12pt!dz j ,1
1ptdz j ,21 , ptP@0,1#. ~15!

The indicator functionsD(s,t;j,z,A) andD(s,t;j,z,G) re-
strict the space of solutionssP$21,1%N andtP$21,1%M to
those that obey Eqs.~4! and ~5!:

D~s,t;j,z,A!5 )
LKVL

F11
1

2
ALKVL

3S )
i PLK

s ij i )
j PVL

t jz j21D G , ~16!

D~s,t;j,z,G!5 )
LK8VL8

F11
1

2
GLK8VL8

3S )
i PLK8

s ij i )
j PVL8

t jz j21D G , ~17!

and finally the termsF(•••)P$0,1% correspond to

F~s;j!5)
i 51

N

@~12ci !1cids i ,j i
#, ~18!

F~t;z!5)
i 51

M

@~12di !1didt i ,z i
#, ~19!

where the quenched variablesci ,djP$0,1% model prior
knowledge of bits of the plaintext and the corrupting vec
such that if for somei the plaintext bitj i is known then the
thermal variables i takes the quenched plaintext value~and
similarly for the corruption vectorz j andt j ). For the distri-
bution of ci anddj we will consider

P~ci !5ws dci ,1
1~12ws!dci ,0

wsP@0,1#, ~20!

P~dj !5wtddj ,1
1~12wt!ddj ,0

wtP@0,1#. ~21!

The system described by Eq.~12! represents a set of var
ables interacting via multispin ferromagnetic couplings
finite connectivity, represented by a combination of matric
in the presence of the random fieldsj iFs and z jFt . At b
51 ~which corresponds to the Nishimori temperature@13#!
we will evaluate the free energy per plaintext bit

f 52 lim
N→`

1

bN
^ ln Z&G . ~22!

The macroscopic observable we are interested in calcula
is the overlapm5 limN→`(1/N)( ij i ĵ i between the plaintex
and the bayes marginal posterior maximizer~MPM! estimate
of the plaintextĵ i[sgn(s i56s i p(s i ur) where p(s i ur) is
the microscopic state probability~12!. Disorder averageŝ&G

are taken over the probability distributions~14!, ~15!, ~20!,
~21! and over the distribution of the tensorsA andG obeying
constrains~8!–~11!:
05612
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^F~A!&A,$C̃i ,L̃ i %

5
1

N (
$ALKVL

%
)
i 51

N K dF (
LKVL / i PLK

ALKVL
2C̃i G L

P(C̃i )

3)
j 51

M K dF (
LKVL / j PVL

ALKVL
2L̃ j G L

P(L̃ j )

F~A!,

~23!

^F~G!&G5
1

N 8
(

$GLK8VL8
%
)
i 51

N

dF (
LK8VL8 / i PLK8

ALK8VL8
2C8G

3)
j 51

M

dF (
LK8VL8 / j 1PVL8

GLK8VL8
21GF~G!, ~24!

whereN andN 8 are the corresponding normalization co
stants.

The parametersws ,wt ,Fs ,Ft , andg describe the attack
characteristics.

IV. THE FREE ENERGY AND DECRYPTION
OBSERVABLES

The calculation generally follows that of Refs.@6,10#.
To perform the various disorder averages we begin
invoking the replica identitŷ ln Z&5limn→01/n ln ^Zn& and
making the gauge transformationss i→s ij i , t i→t iz i ,
ALKVL

→ALKVL
) i PLK

j i) j PVL
z j , and GLK8VL8

→GLK8VL8
) i PLK8

j i) j PVL8
z j . This will allow us to disen-

tangle the variables$j,z% from expressions involving the
tensorsA andG in Eqs.~16! and~17!. Replacing thed func-
tions in Eqs.~23! and ~24! by their integral representation
allows us to perform the tensor summations. This leads
site-factorized expressions with~an infinite number! m of
replica indices. They take the form

qa1 , . . . ,am
5(

i 51

N

Zis i
a1 , . . . ,s i

am,

r a1 , . . . ,am
5(

i 51

N

Xis i
a1 , . . . ,s i

am , ~25!

ta1 , . . . ,am
5(

j 51

M

Yjt j
a1 , . . . ,t j

am,

ua1 , . . . ,am
5(

j 51

M

Vjt j
a1 , . . . ,t j

am , ~26!

which we insert in the expression for the free energy
suitably definedd functions ~giving rise to the Lagrange
multipliers q̂a1 , . . . ,am

, r̂ a1 , . . . ,am
, t̂a1 , . . . ,am

, and

ûa1 , . . . ,am
). To proceed with the calculation one needs

assume a certain order parameter symmetry for the ab
5-4
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quantities and their conjugates for allm.1. The simplest
such assumption renders all replicam-tuples equivalent and
all order parameters within this replica symmetric sche
need only depend on the numberm. This effect can be de
scribed by the introduction of suitably defined distribution
the moments of which completely define them-index order
parameters

qa1 , . . . ,am
5qE dx p~x! xm, q̂a1 , . . . ,am

5q̂E dx p̂~x!xm,

~27!

r a1 , . . . ,am
5r E dyr~y!ym, r̂ a1 , . . . ,am

5 r̂ E dyr̂~y!ym,

~28!

ta1 , . . . ,am
5tE dxf~x!xm, t̂a1 , . . . ,am

5 t̂E dxf̂~x!xm,

~29!

ua1 , . . . ,am
5uE dyc~y!ym, ûa1 , . . . ,am

5ûE dyĉ~y!ym,

~30!

where all integrals are over the interval@21,1#. The Nishi-
mori condition (b51), which corresponds to MPM decod
ing @14#, also ensures that this simplest replica-symme
scheme is sufficient to describe the thermodynamic
dominant state@13,15#. Furthermore, it is worthwhile men
tioning that extending the replica symmetric calculation
include the one-step replica symmetry breaking ansatz is
likely to modify the location of the transition points ident
fied under the replica-symmetric ansatz, as has been rec
shown in a similar system@16#. Using the above ansatz w
perform the trace over the spin variables, and in the limin
→0 we obtain:

2b f 5ExtrH 2C̄J1a@p,p̂#2
C̄L

K
J1b@r,r̂ #2C8J1c@f,f̂#

2
C8

K8
J1d@c,ĉ#1

C̄

K
J2a@p,r#1

C8

K8
J2b@f,c#

1J3a@p̂,f̂#1
C̄

K

L

L̄
J3b@ r̂,ĉ#J 2S C̄

K
1

C8

K8
D ln 2,

~31!

where the extremization is taken over the distributions
fined in Eqs.~27!–~30! and the various integralsJ!! are
given by

J1a@p,p̂#5E dxdx̂p~x!p̂~ x̂!ln~11xx̂!,

J1b@r,r̂ #5E dydŷr~y!r̂~ ŷ!ln~11yŷ!, ~32!
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J1c@f,f̂#5E dxdx̂f~x!f̂~ x̂! ln~11xx̂!,

J1d@c,ĉ#5E dydŷc~y!ĉ~ ŷ!ln~11yŷ!, ~33!

J2a@p,r#5E F )
k51

K

dxkp~xk!)
,51

L

dy,r~y,!G
3 lnS 11)

k
xk)

,
y,D , ~34!

J2b@f,c#5E dyc~y!F )
k51

K8

dxk f~xk!G lnS 11y)
k

xkD ,

~35!

J3a@p̂,f̂#5E )
c851

C8

df̂~yc8!H ~12g!CK ln (
l56

@~12c!

1cdl,1#e
bFsjl)

c8
~11yc8l!L

c,j

1K E F )
c51

C̃

dp̂~xc!G K ln (
l56

@~12c!1cdl,1#

3ebFsjs)
c

~11xcl!

3)
c8

~11yc8l!L
c,j

L
C̃

J , ~36!

J3b@ r̂,ĉ#5E dy ĉ~y!H ~12g!LK ln (
l56

@~12d!

1ddl,1#e
bFtzl~11yl!L

d,z

1K E F )
l 51

L̃

dr̂~xl !G K ln (
l56

@~12d!1ddl,1#

3ebFtzl)
l

~11xl l!~11yl!L
d,z
L

L̃

J , ~37!

where

C̄5 (
C̃50

C

P~C̃;C!C̃, L̄5 (
L̃50

L

P~ L̃;L !L̃ ~38!

Averages denoted̂•••&C̃ and ^•••& L̃ are over the densities
~6! and ~7! with C̃51, . . . ,C and L̃51, . . . ,L. Functional
5-5
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differentiation of Eq.~31! with respect to the densities o
Eqs. ~27!–~30! results in the following saddle point equa
tions:

p̂~ x̂!5E F )
k51

K21

dxkp~xk!)
l 51

L

dylr~yl !G
3dF x̂2 )

k51

K21

xk)
l 51

L

yl G , ~39!

r̂~ ŷ!5E F )
k51

K

dxkp~xk! )
l 51

L21

dylr~yl !G
3dF ŷ2)

k51

K

xk)
l 51

L21

yl G , ~40!

f̂~ x̂!5E dyc~y!F )
k51

K821

dxkf~xk!GdF x̂2y )
k51

K821

xkG ,

~41!

ĉ~ ŷ!5E F )
k51

K8

dxkf~xk!GdF ŷ2)
k51

K8

xkG ~42!

and

p~x!5wsd@x21#

1
~12ws!

C̄ K C̃E F )
c851

C8

df̂~ ŷc8! )
c51

C̃21

dp̂~ x̂c!G
3K dS x2tanhFbFsj1 (

c51

C̃21

arctanh~ x̂c!

1 (
c851

C8

arctanh~ ŷc8!G D L
j

L
C̃

, ~43!

r~x!5wtd@x21#1
~12wt!

L̄
K L̃E dĉ~ ŷ!F )

l 51

L̃21

dr̂~ ŷl !G
3K dS x2tanhFbFtz1 (

l 51

L̃21

arctanh~ x̂l !

1arctanh~ ŷ!G D L
z
L

L̃

, ~44!
05612
f~x!5wsd@x21#1~12ws!E )
c851

C821

df̂~yc8!H ~12g!C

3K dS x2tanhFbFsj1 (
c851

C821

arctanh~ ŷc8!G D L
j

1K E F )
c51

C̃

dp̂~ x̂c!G K dS x2tanhFbFsj

1 (
c51

C̃

arctanh~ x̂c!1 (
c851

C821

arctanh~ ŷc8!G D L
j

L
C̃

J ,

~45!

c~x!5wt d@x21#1~12wt!H ~12g!L

3^d@x2tanh~bFtz!#&z1K E F)
l 51

L̃

dr̂~ x̂l !G
3K dS x2tanhFbFtz1(

l 51

L̃

arctanh~ x̂l !G D L
z
L

L̃

J .

~46!

In general, the coupled set of equations~39!–~46! are to be
solved numerically. Among the set ofs that satisfy Eqs.~4!

and ~5! we choose the MPM estimate of the plaintextĵ i
5sgn(s i56s i p(s i ur)5sgn̂ s i& ~thermal average! by using

Nishimori’s condition~or b51) @13#. Then, the overlapm
5 limN→`1/N( ij i ĵ i becomes

m5ws1~12ws!E dh P~h!sign~h!, ~47!

P~h!5E F )
c851

C8

df̂~ ŷc8!G H ~12g!CK dS h2tanhFbFsj

1 (
c851

C8

arctanh~ ŷc8!G D L
j

1K E F )
c51

C̃

dp̂~ x̂c!G
3K dS h2tanhFbFsj1 (

c51

C̃

arctanh~ x̂c!

1 (
c851

C8

arctanh~ ŷy8!G D L
j

L
C̃

J , ~48!

from which it can be seen that the perfect~ferromagnetic!
solution m51 is achieved whenws51 ~complete knowl-
edge of the solution! or when f̂(x)5d@x21#. This also
5-6
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implies that all densities involved in Eq.~31! l(x)
5$p(x), . . . ,ĉ(x)% acquire the forml(x)5d@x21# giving
a free energy of the form

f FM5S C8

K8
2

C

K D ln 22
C

K
bFt^z&z . ~49!

The physical meaning of the termsw! d@x21# in Eqs.~43!–
~46! is that the acquired microscopic knowledge gives
probabilistic weight at the ferromagnetic state. The statem

50 is obtained ifws5Fs50 andp̂(x)5f̂(x)5d@x# ~para-
magnetic solution!.

V. PHASE DIAGRAMS

In this section we obtain numerical solutions for vario
attack scenarios. In all cases studied we assume an unb
plaintext (ps51/2, Fs50); for brevity we refer to the re-
maining bias parameter, the corruption level denotedpt in
previous sections, simply asp. All experiments have been
carried out using a regular cryptosystem withK5L52, be-
ing the original cryptosystem suggested in Ref.@4#. In prin-
ciple, one can use any set of regular or irregular matric
provided one identifies the corresponding dynamical tra
tion point. However, having been thoroughly studied pre
ously, the current construction serves as a particularly su
benchmark.

Solving the coupled equations~39!–~46! we typically ob-
serve that for sufficiently small values ofp the ferromagnetic
statem51 is the only stable solution whereas at a corrupt
value that marks the dynamical~spinodal! transitionps , an
exponential number of solutions withmÞ1 are created@ei-
ther suboptimal ferromagnetic or paramagnetic, depend
on the values of (K,C,L)]. For all p.ps perfect decryption
will be difficult to obtain. This transition also defines th
corruption level below which an unauthorized attacker, w
has acquired partial information of the secret keys, will
successful.

We will concentrate on two main attacks:~i! the attacker
has partial knowledge of the keys~primarily the matrixB);
~ii ! the attacker has partial microscopic knowledge of
plaintext and/or corruption vector.

In Fig. 2 we present a phase diagram describing regi
with perfect (m51) or partial/null (umu,1) decryption suc-
cess as evaluated from solving Eqs.~31! and ~47!. We plot
the dynamical transition corruption levelps as a function of
the private key fractional knowledgeg for different values of
ws and wt ~we have setps51/2 which corresponds to a
‘unbiased’ plaintext!. In the limit g50 ~i.e., no knowledge of
the matrices!, while m51 may be a stable solution, the d
cryption dynamics is fully dominated byumu,1 states. For
g51 the cryptosystem describes a specific MN code
perfect decryption can occur belowps .

The interaction between sparsely~4! and densely~5! con-
nected decryption components is nonlinear and nontriv
however, as a first approximation one can view the fractio
matrix knowledgeg as changing the effective sparse comp
nent, which is the main contributor in the decryption proce
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To that endg will have a direct impact on the effective cod
rateN/(Mg), the average connectivitygC, and the connec-
tivity distribution. It is clear that at an effective code rate
(g5N/M51/3 in the case of the parameters used in Fig.!
decryption is even not theoretically feasible. The reason F
2 points to a possibility of decryption below this value is d
to additional information brought in by the dense comp
nents we ignored in this simplistic description.

We also examined the effect of prior microscopic know
edge of the plaintext/corrupting vector (ws ,wt.0) on the
area of perfect decryption; which clearly increases with
knowledge provided, as expected. Also this can be viewe
a change to the effective code rate. This time, the par
microscopic knowledge of either plaintext or corrupting ve
tor ~or both! serves to reduce the effective number of va
ables and hence the code rate itself; lower code rate
typically allow for perfect decryption in worse corruptio
conditions as can be seen in Fig. 2

To understand the implication of these results let us
sume using the cryptosystem described in Fig. 2 at a cho
corruption level ofp50.1 ~which is chosen much smalle
that ps to increase the decryption reliability!. In this case
knowing about 70% of the matrices~secret keys! will be
sufficient for decrypting the ciphertext. True, there is still
need to know the dense matrixD21 for extracting the plain-
text itself and the exposed fraction of the secret key is s
nificant; but still there is a weakness that may be exploi
by a skillful attacker.

To compare the importance of prior microscopic know
edge of plaintext versus that of the corrupting vector
plotted in Fig. 3 the phase diagrams for (ws ,wt)
5$(0.1,0),(0.2,0)% and (ws ,wt)5$(0,0.1),(0,0.2)% which
describe two complementary scenarios. The effect is q
similar, taking into account the information provided by th
two vectors~the plaintext is unbiased but of lengthN while
the corruption vector is biased but of lengthM ). For highg
values microscopic knowledge of the corrupting vector b
comes more informative than that of the plaintext, an eff

FIG. 2. Phase diagram of the spinodal corruption rate agains
fractional knowledge of the private keyg for a (K,C,L)5(2,6,2)
cryptosystem for (ws ,wt)5(0,0) ~solid line! and (0.2,0.2)~dashed
line!. Microscopic knowledge of the plaintext and the corrupti
vector enlarges the perfect decryption area, as expected.
5-7
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FIG. 3. Phase diagrams of the spinodal corruption rates against the fractional knowledge of the private keyg for a (K,C,L)5(2,6,2)
cryptosystem. Left picture: (ws ,wt)5(0.1,0) ~solid line! and (0,0.1)~dashed line!. Right picture: (ws ,wt)5(0.2,0) ~solid line! and (0,0.2)
~dashed line!. For sufficiently largeg values microscopic knowledge of the corrupting vector becomes more important to the unauth
user than that of the plaintext; this effect becomes more emphasized as the fraction of known bits increases.
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bits increases.

In Fig. 4 we compare two cryptosystems with (K,C,L)
5(2,4,2) and (K,C,L)5(2,3,2) for (ws ,wt)5(0,0). We
see that smallerC values~i.e., higher code rates! will reduce
the area of perfect decryption. On the one hand, this
increase the secret information required for perfect decr
tion at each corruption level; on the other hand, it will redu
the corruption level that can be used and will expose
cryptosystem to attacks based on an exhaustive searc
corruption vectors.

The security of a cryptosystem may be compromis
without a full recovery of the plaintext; also partial recove
of the plaintext may pose a significant threat. To study
effect of partial knowledge of the matrices and plaintext
the ability to obtain high overlap between the decrypted
phertext and plaintext, we conducted several experiments
example of which appears in Fig. 4. Here we show the ov
lap obtainedm as function of the corruption ratep for a
specific cryptosystem (K,C,L)5(2,6,2) along the lineg
50.8 and for two different choices ofws . Prior to the dy-
namical transition points both ciphertexts are decrypted p
05612
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fectly; this corresponds to corruption and partial knowled
levels below the solid and dashed lines of Fig. 2.

Above the dynamical transition point, new suboptimal s
lutions are created and the overlap value obtained dete
rates with the corruption level. However, the two differe
choices ofws values lead to two different deterioration pa
terns: while overlap in the system with no microscop
knowledge of the plaintext deteriorates very rapidly, the s
tem with ws50.2 provides solutions with high overlap va
ues even if the corruption is high. As a consequence, we
that the effect of microscopic knowledge goes beyond a s
in the dynamical transition point; it also influences decry
tion beyond that point~in fact, it goes even beyond Shan
non’s limit!.

VI. BASIN OF ATTRACTION

The increasingly narrowing basin of attraction for the fe
romagnetic solution, as the connectivity valuesK, C, and
L→`, is central to the security level offered by the crypt
system. The effect has been reported in a number of pa
in the statistical physics@4,12# and information-theory@5#
literature; in this section we will show that the basin of a
ible. Right:

FIG. 4. Left: Comparison between two different cryptosystems with (K,C,L)5(2,3,2) ~solid line! and (K,C,L)5(2,4,2) ~dashed line!.

SmallerC values correspond to higher rate codes and lead to smaller regions in parameter space where perfect decryption is poss
Overlapm as function of the corrupting ratep obtained from Eq.~47! for a (K,C,L)5(2,6,2) cryptosystem and along the lineg50.8 for
(ws ,wt)5(0.2,0) ~solid line! and (ws ,wt)5(0,0) ~dashed line!.
5-8
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ANALYSIS OF COMMON ATTACKS IN PUBLIC-KEY . . . PHYSICAL REVIEW E68, 056125 ~2003!
traction shrinks as the connectivity increases, to a value
O(1/K) asK,C→`.

To provide a rough evaluation of the basin of attracti
~BOA! for obtaining the ferromagnetic solution we focus
Eq. ~2! in the limit K,C→`. BOA clearly depends on the
algorithm used; here we focus on the belief propagation~BP!
algorithm, which is empirically known to be the best prac
cal algorithm for solving problems of the current type. As f
as we explored, no other schemes such as the naive m
field and the belief revision algorithms exhibit better perfo
mance than BP, which implies that our consideration on
is at least of a certain practical significance~survey propaga-
tion @9# has not yet been tested for these systems!.

Let us represent prior knowledge on plaintextj and noise
z ~in Ising spin representation! as theprior probabilities

Pi
o~s i !5

exp~Fs is i !

2 cosh~Fs i !
, ~50!

Pj
o~t j !5

exp~Ft jt j !

2 cosh~Ft j !
, ~51!

respectively. Here, the parametersFs i andFt j express con-
fidence of the prior knowledge per variable, which is a ge
eralization of the global prior termsFs ,Ft used earlier. No-
tice that this representation includes the case that certain
are completely determined by settinguFs i u ~or uFt j u) →`,
enabling us to cover various scenarios. In the following,
assume that the fraction of completely determined bits is
than 1 whenN,M→`. Given prior probabilities~50! and
~51!, and the indicator functionD(s,t;j,z,A) which is the
alternative to parity check Eq.~2!, the Bayesian framework
provides theposterior probability

Ppost~s,t!5

D~s,t;j,z,A!)
i 51

N

Pi
o~s i !)

j 51

M

Pj
o~t i !

Z
,

~52!

whereZ is the normalization constant. Using Eq.~52!, one
can determine the best possible action for minimizing
expected value of a given cost function@14#. As a cost func-
tion, we select here the Hamming distance between the
rect plain textj and its estimatesĵ, L( ĵ,j)5N2( i 51

N ĵ ij i ;

this selection naturally offers the MPM decodingj î

5sgn(mi
s) as the optimal estimation strategy, where

mi
s5(

s,t
s i Ppost~s,t!, ~53!

is the average of spins i over the posterior probability an
sgn(x)51 for x.0 and21, otherwise.

Computational cost for an exact evaluation of the s
average~53! increases asO(2N1M), which implies that
MPM decoding is practically difficult. An alternative ap
proach is to resort to an approximation such as BP. In
current case, this means to iteratively solving the coup
equations~for details of the derivation see Refs.@5,10#!
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m̂m i
s 5Jm )

l PLs(m)\ i

mm l
s )

j PLt(m)

mm j
t ,

m̂m j
t 5Jm )

l PLs(m)

mm l
s )

kPLt(m)\ j

mmk
t , ~54!

mm i
s 5tanhS Fs i1 (

nPM s( i )\m

arctanh~m̂n i
s !D ,

mm j
t 5tanhS Ft j1 (

nPM t( j )\m

arctanh~m̂n j
t !D , ~55!

whereJm[() l PLs(m)j l) j PLt(m)z j ), L s(m) andL t(m) are
the sets of indices of nonzero elements inmth row of A and
B, respectively, andM s( i ) andM t( j ) are similarly defined
for columns ofA andB, respectively.L s(m)\ i denotes a se
of indices inL s other thani, and similarly for other sym-
bols. The variablesmm i

s/t and m̂m i
s/t represent pseudo

posterior-averages ofs i ~or t j ) when themth checkJm is left
out, and the influence of a newly addedJm on s i ~or t j ),
respectively~see Refs.@5,10# for details!. Using m̂m i

s , the
posterior averagemi

s is obtained as

mi
s5tanhS Fs i1 (

mPM s( i )

arctanh~m̂m i
s !D . ~56!

Let us investigate the condition necessary for finding
correct solution by iterating Eqs.~54! and ~55! in the limit
K,C→`. For this purpose, we first employ the gauge tra
formation j imm i

s →mm i
s , j i m̂m i

s →m̂m i
s , z jmm j

t →mm j
t , z j m̂m j

t

→m̂m j
t and Jm() l PLs(m)j l) j PLt(m)z j )→1. This decouples

the quenched random variablesj i and z j from Eq. ~54!, as
Jm becomes independent of the quenched variables, and
BP equations can be expressed as

m̂m i
s 5 )

l PLs(m)\ i

mm l
s )

j PLt(m)

mm j
t ,

m̂m j
t 5 )

l PLs(m)

mm l
s )

kPLt(m)\ j

mmk
t , ~57!

mm i
s 5tanhS Fi

sj i1 (
nPM s( i )\m

arctanh~m̂n i
s !D ,

mm j
t 5tanhS F j

tz j1 (
nPM t( j )\m

arctanh~m̂n j
t !D . ~58!

The expression of the correct solution is also converted
mm i

s 51 andmm j
t 51. Notice that any state which is chara

terized by decreasing absolute valuesumm i
s u,12« and

umm i
t u,12« for an arbitrary fixed positive number«.0 is

attracted to a locally stable solutionm̂m i
s ;0, m̂m j

t ;0, mm i
s

5tanh(Fi
sji), andmm j

t 5tanh(Fj
tzj) for K→` in a single up-

date since products on the right hand sides of Eq.~57! van-
ish. To provide a rough evaluation of the BOA for the corre
5-9
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SKANTZOS, SAAD, AND KABASHIMA PHYSICAL REVIEW E 68, 056125 ~2003!
~ferromagnetic! solutionmm i
s 51 andmm j

t 51, let us assume
that mm i

s and mm j
t are randomly distributed at 12«(K) and

2@12«(K)# with probabilities 12p(K) andp(K), respec-
tively, where«(K) and p(K) are small parameters to cha
acterize the BOA for a largeK. Under this assumption,m̂m i

s

and m̂m j
s are distributed at 6@12«(K)#K1L;6@1

2«(K)#K with probability $16@122p(K)#K1L%/2;$1
6@122p(K)#K%/2, respectively. If either@12«(K)#K or
@122p(K)#K is negligible, the absolute values ofmm i

s and
mm j

t become sufficiently smaller than 1, and therefore,
state is trapped in a locally stable solution in the seco
iteration@19#. This implies that the critical condition is give
by «(K);O(1/K) andp(K);O(1/K) for largeK. In terms
of the macroscopic overlap, this meansmcr

0 '12O(1/K).

VII. RELIABILITY

Unlike most of the commonly used cryptosystems wh
are based on a deterministic decryption procedure, the
rent cryptosystem relies on a probabilistic decryption p
cess. The evaluation of decryption success for anauthorized
user is therefore as important as assessing the level of ro
ness against attacks.

In practical scenarios, decryption success generally
pends on the plaintext size. Analysis of finite size effects
the belief propagation based decryption procedure is d
cult. A principled alternative that we pursue here is based
evaluating theaverage error exponentof the current crypto-
system; this provides the expected error level at any gi
corruption level when maximum likelihood decoding is em
ployed, and therefore represents a lower bound to the
pected error rate. Moreover, the corruption levels emplo
are far below the critical~thermodynamic! transition point,
we thereforeassumethat belief propagation decryption wi
provide similar performance to maximum likelihood deco
ing; clearly, the lower bound will become looser as we g
close to the dynamical transition point.

The average block error ratePB(p) ~i.e., erroneous de
crypted plaintexts! takes the form

PB~p!5e2ME(p), ~59!

whereE(p) is the average error exponent per noise levep
andM the length of the ciphertext~in the particular case o
LDPC codes we assume that short loops, which contrib
polynomially to the block error probability@17#, have been
removed!. The quantityPB(p) represents the probability b
which candidate solutions$s,t% are drawn from the set o
those satisfying Eq.~4! ~with g51; authorized decryption!
other than the ones corresponding to the true plaintext
corrupting vector,s5j and t5z, respectively. To evaluate
this probability we introduce the indicator function

C~G!5 lim
b→`

lim
l1,2→6l

@Z1
l1~G;b1!Z2

l2~G;b2!#b15b25b ,

~60!
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whereG5$j,z,A% collectively denotes the set of quenche
variables. The powerlP@0,1# is used in conjunction with
the partition functions

Z1~G;b1!5 (
sÞj

(
tÞz

e2b1H(s,t) ,

Z2~G;b2!5(
s

(
t

e2b2H(s,t) ~61!

to provide an indicator function as explained below. T
HamiltonianH(s,t) is given by Eq.~13! and the trace over
spin variables is restricted to those configurations satisfy
Eq. ~4!. The above partition functionsZ1 andZ2 differ only
in the exclusion of the true plaintext and corrupting vector
the trace over variables; this enables us to identify instan
where the maximum likelihood decoder chooses soluti
that do not match the true~quenched variable! vectors.
Hamiltonian ~13! is proportional to the magnetization
ms(s)5(1/N)( is i and mt(t)5(1/M )( it i . Therefore, if
the true plaintext and corrupting vectors have the high
magnetizations~decryption success!, the Boltzmann factor
exp@2bH(s,t)# will dominate the sum over states inZ2 in
the limit b→` and C(G)50. Alternatively, if some other
vectorssÞj andtÞz have the highest magnetizations of a
candidates~decoding failure!, its Boltzmann factor will
dominate bothZ1 and Z2 so thatC(G)51. Separate tem-
peraturesb1,2 and powersl1,2 have been introduced to de
termine whether obtained solutions are physical or not~val-
ues of these parameters will be obtained via the zero-entr
condition!.

To derive the average error exponentE(p) we take the
logarithm of the above indicator function averaged with
spect to the disorder variablesG5$j,z,A%,

E~p!5 lim
M→`

1

M
ln^C~G!&G . ~62!

The evaluation of Eq.~62! is similar in spirit to the analy-
sis of Sec. IV. For details of this calculation we refer t
reader to Ref.@18# where we also study and compare t
reliability and average error exponents of various lo
density parity-check codes.

Results describingE(p) for authorized decryption of the
cryptosystem@4# are presented in Fig. 5 where we plotE(p)
as function of the corruption levelp for (K,C,L)5(2,8,2)
~code rate 1/4! and (K,C,L)5(2,4,2) ~code rate 1/2! cryp-
tosystems. It is clear that decryption errors decay very
with the system size as we go away from the critical corru
tion level. For instance, in the case ofR51/4, using a cor-
ruption level ofp50.13 ~Shannon’s limit is atp50.20) and
a modest ciphertext size ofM51000 will result in a negli-
gible block error probabilityPB510211.

VIII. DISCUSSION

In this paper we have analyzed several security iss
related to the recently suggested public-key cryptosystem
Ref. @4#. The suggested cryptosystem is based on the c
5-10
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ANALYSIS OF COMMON ATTACKS IN PUBLIC-KEY . . . PHYSICAL REVIEW E68, 056125 ~2003!
putational difficulty of decomposing a dense matrix into
combination of dense and sparse matrices~obeying certain
statistics! which is a known hard computational problem. W
have considered several attack scenarios in which unau
rized parties have acquired partial knowledge of one or m
of the private keys and/or microscopic knowledge of t
plaintext and/or the ‘‘corrupting vector.’’ The analysis fo
lows standard statistical mechanical methods of dealing w
diluted spin systems within replica symmetric consid
ations. Of central importance to the unauthorized decryp
is the dynamical transition which defines decryption succ
in practical situations. This has been calculated using a
lica symmetric ansatz, which is sufficient for an accur
evaluation of the dynamic transition point; more involv
one-step replica symmetry breaking schemes for similar
tems predict the same dynamical transition point as that

FIG. 5. Reliability exponent~62! as a function of the corruption
level p for the caseK5L52 and ratesR51/2 ~dashed line! and
R51/4 ~solid line!.
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tained by using the replica symmetric anzats@16#. Our phase
diagrams show the dynamical threshold as a function of
partial acquired knowledge of the private key; they descr
regions with perfect (m51) or partial/null decryption suc-
cess (umu,1).

Public-key cryptosystems play an important role in mo
ern communications. The increasing demand for sec
transmission of information has lead to the invention
novel cryptosystems in recent years. To this extent and ba
on the insight gained by statistical physics analyses of er
correcting codes a new family of cryptosystems was s
gested in Ref.@4#. This paper constitutes a first step in stud
ing this class of cryptosystems by considering the poten
success of possible attacks.

Several future research directions aimed at improving
security and reliability of this cryptosystem may includ
studying the efficacy of irregular code constructions and
use of novel decryption methods such as survey propaga
@9# for pushing the dynamical transition point closer to t
information theoretic limits.
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